Higher insulin concentrations are required to suppress gluconeogenesis than glycogenolysis in nondiabetic humans.
نویسندگان
چکیده
To determine the mechanism(s) by which insulin inhibits endogenous glucose production (EGP) in nondiabetic humans, insulin was infused at rates of 0.25, 0.375, or 0.5 mU. kg(-1). min(-1) and glucose was clamped at approximately 5.5 mmol/l. EGP, gluconeogenesis, and uridine-diphosphoglucose (UDP)-glucose flux were measured using [3-(3)H]glucose, deuterated water, and the acetaminophen glucuronide methods, respectively. An increase in insulin from approximately 75 to approximately 100 to approximately 150 pmol/l ( approximately 12.5 to approximately 17 to approximately 25 microU/ml) resulted in progressive (ANOVA; P < 0.02) suppression of EGP (13.1 +/- 1.3 vs. 11.7 +/- 1.03 vs. 6.4 +/- 2.15 micromol x kg(-1) x min(-1)) that was entirely due to a progressive decrease (ANOVA; P < 0.05) in the contribution of glycogenolysis to EGP (4.7 +/- 1.7 vs. 3.4 +/- 1.2 vs. -2.1 +/- 1.3 micro mol x kg(-1) x min(-1)). In contrast, both the contribution of gluconeogenesis to EGP (8.4 +/- 1.0 vs. 8.3 +/- 1.1 vs. 8.5 +/- 1.3 micro mol x kg(-1) x min(-1)) and UDP-glucose flux (5.0 +/- 0.4 vs. 5.0 +/- 0.3 vs. 4.0 +/- 0.5 micro mol x kg(-1) x min(-1)) remained unchanged. The contribution of the direct (extracellular) pathway to UDP-glucose flux was minimal and constant during all insulin infusions. We conclude that higher insulin concentrations are required to suppress the contribution of gluconeogenesis of EGP than are required to suppress the contribution of glycogenolysis to EGP in healthy nondiabetic humans. Since suppression of glycogenolysis occurred without a decrease in UDP-glucose flux, this implies that insulin inhibits EGP, at least in part, by directing glucose-6-phosphate into glycogen rather than through the glucose-6-phosphatase pathway.
منابع مشابه
Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis.
To determine whether the hepatic insulin resistance of obesity and type 2 diabetes is due to impaired insulin-induced suppression of glycogenolysis as well as gluconeogenesis, 10 lean nondiabetic, 10 obese nondiabetic, and 11 obese type 2 diabetic subjects were studied after an overnight fast and during a hyperinsulinemic-euglycemic clamp. Gluconeogenesis and glycogenolysis were measured using ...
متن کاملEffect of ghrelin on glucose regulation in mice.
Improvement of glucose metabolism after bariatric surgery appears to be from the composite effect of the alterations in multiple circulating gut hormone concentrations. However, their individual effect on glucose metabolism during different conditions is not clear. The objective of this study was to determine whether ghrelin has an impact on glycogenolysis, gluconeogenesis, and insulin sensitiv...
متن کاملPlasma C5 Glucose–to–2H2O Ratio Does Not Provide an Accurate Assessment of Gluconeogenesis During Hyperinsulinemic-Euglycemic Clamps in Either Nondiabetic or Diabetic Humans
OBJECTIVE Measurement of plasma C2 glucose enrichment is cumbersome. Therefore, the plasma C5 glucose-to-(2)H(2)O rather than the plasma C5-to-C2 glucose ratio commonly has been used to measure gluconeogenesis and glycogenolysis during hyperinsulinemic-euglycemic clamps. The validity of this approach is unknown. RESEARCH DESIGN AND METHODS Ten nondiabetic and 10 diabetic subjects ingested (2)...
متن کاملTransaldolase exchange and its effects on measurements of gluconeogenesis in humans.
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. ²H₂O and acetaminophen were ingested and ...
متن کاملDifferential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans.
Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 52 9 شماره
صفحات -
تاریخ انتشار 2003